Skip to main content

Smog in Shanghai, China



Two review articles on using satellite data for air quality applications:

  • Duncan, B., et al., Satellite Data of Atmospheric Pollution for U.S. Air Quality Applications: Examples of Applications, Summary of Data End-User Resources, Answers to FAQs, and Common Mistakes to Avoid, Atmospheric Environment, doi:10.1016/j.atmosenv.2014.05.061, 2014. [pdf]
  • Streets, D., Canty, T., Carmichael, G., de Foy, B., Dickerson, R., Duncan, B., Edwards, D., Haynes, J., Henze, D., Houyoux, M., Jacob, D., Krotkov, N., Lamsal, L., Liu, Y., Lu, Z., Martin, R., Pfister, G., Pinder, R., Salawitch, R., Wecht, K., Emissions estimation from satellite retrievals: A review of current capability, Atmos. Environ., doi: 10.1016/j.atmosenv.2013.05.051, 2013. [pdf]

COVID-19 & OMI NO2 and SO2 Data

Health Studies:

  • Anenberg, S.C., et al., Estimates of the Global Burden of Ambient PM2.5, Ozone, and NO2 on Asthma Incidence and Emergency Room Visits. Env. Health Perspectives, 126, 10,, 2018.
  • Bowe, B., et al., The 2016 global and national burden of diabetes mellitus attributable to PM2·5 air pollution, The Lancet Planetary Health, 2, 7,, 2018.
  • Bowe, B., et al., Particulate Matter Air Pollution and the Risk of Incident CKD and Progression to ESRD, JASN, 29 (1) 218-230; DOI: 10.1681/ASN.2017030253, 2018.
  • Brauer, M., et al., Ambient Air Pollution Exposure Estimation for the Global Burden of Disease 2013, Environ. Sci. & Tech., 50 (1), 79-88, doi: 10.1021/acs.est.5b03709, 2016.
  • Chan, T.-C. et al., Long-Term Exposure to Ambient Fine Particulate Matter and Chronic Kidney Disease: A Cohort Study, Environ. Health Persp.,, 2018.
  • Chen, H, et al., Ambient fine particulate matter and mortality among survivors of myocardial infarction: population-based cohort study. Environ Health Perspect 124:1421–1428,, 2016.
  • Clark, L., D. Millet, and J. Marshall, National patterns in environmental injustice and inequality: Outdoor NO2 air pollution in the United States, PLOS ONE, 9(4), 1-8, doi: 10.1371/journal.pone.0094431, 2014.
  • Cohen, A.J., et al., Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. The Lancet 389, 1907-1918, 2017.
  • Eum, K.-D., et al., Long-term NO2 exposures and cause-specific mortality in American older adults. Environment International, 124, 10-15,, 2019.
  • Fleischer NL, et al., Outdoor air pollution, preterm birth, and low birth weight: analysis of the World Health Organization Global Survey on Maternal and Perinatal Health. Environ Health Perspect 122:425–430;, 2014.
  • Heft-Neal, S., et al., Robust relationship between air quality and infant mortality in Africa. Nature, 559 (7713), 2018.
  • Hu, Z. and Baker, E., Geographical Analysis of Lung Cancer Mortality Rate and PM2.5 Using Global Annual Average PM2.5 Grids from MODIS and MISR Aerosol Optical Depth. Journal of Geoscience and Environment Protection, 5, 183-197. doi: 10.4236/gep.2017.56017, 2017.
  • Jerrett M, et al., Comparing the health effects of ambient particulate matter estimated using ground-based versus remote sensing exposure estimates. Environ Health Perspect 125:552–559;, 2017.
  • Karambelas, A., T. Holloway, P. L. Kinney, A. M. Fiore, R. DeFries, G. Kiesewetter and C. Heyes (2018). Urban versus rural health impacts attributable to PM2.5 and O3 in northern India. Environ. Res. Lett., 13, 6,
  • Lelieveld & Poschl, Chemists can help to solve the air-pollution health crisis. Nature. 2017 Nov 16;551(7680):291-293. doi: 10.1038/d41586-017-05906-9.
  • Lin, H., et al., Exposure to ambient PM2.5 associated with overall and domain-specific disability among adults in six low- and middle-income countries, Environment International, 104,, 2017.
  • Loughner, C.P., M.B. Follette-Cook, B.N. Duncan, J. Hains, K.E. Pickering, J. Moy, and M. Tzortziou: The benefits of lower ozone due to air pollution emissions reductions (2002-2011) in the Eastern US during extreme heat (2019),, Journal of Air and Waste Management.
  • Novotny, E., et al., National satellite-based land-use regression: NO2 in the United States, Environ. Sci. Technol., 45, 4407-4414, doi: 10.1021/es103578x, 2011.
  • Shindell, D., et al., Temporal and spatial distribution of health, labor, and crop benefits of climate change mitigation in the United States. Proceedings of the National Academy of Sciences, 118 (46) e2104061118;, 2021.
  • Tagliabue G, Borgini A, Tittarelli A, et al. Atmospheric fine particulate matter and breast cancer mortality: a population-based cohort study. BMJ Open. 2016;6(11):e012580. Published 2016 Nov 14. doi:10.1136/bmjopen-2016-012580, 2016.
  • Zhang, Y., et al., Long-term trends in the ambient PM2.5- and O3-related mortality burdens in the United States under emission reductions from 1990 to 2010, Atmos. Chem. Phys., 18, 15003-15016,, 2018.
  • Zhu, L., et al., Formaldehyde (HCHO) as a hazardous air pollutant: Mapping surface air concentrations from satellite and inferring cancer risks in the United States, Environ. Sci. Technol., 51 (10), pp 5650–5657, doi: 10.1021/acs.est.7b01356, 2017.

Food Security Studies:

  • Review Article: Ainsworth, E.A. (2017). Understanding and Improving Global Crop Response to Ozone Pollution. The Plant Journal, 90(5): 886-97.
  • Avnery, S., Mauzerall, D. L., Liu, J., & Horowitz, L. W. (2011). Global crop yield reductions due to surface ozone exposure: 1. Year 2000 crop production losses and economic damage. Atmospheric Environment, 45(13), 2284-2296.
  • Avnery, S., Mauzerall, D. L., Liu, J., & Horowitz, L. W. (2011). Global crop yield reductions due to surface ozone exposure: 2. Year 2030 potential crop production losses and economic damage under two scenarios of O3 pollution. Atmospheric Environment, 45(13), 2297-2309.
  • Burney, J., and V. Ramanathan. 2014. Recent climate and air pollution impacts on Indian agriculture. Proceedings of the National Academy of Sciences, 1111, 46, doi:10.1073/pnas.1317275111.
  • Cailleret, M., Ferretti, M., Gessler, A., Rigling, A., & Schaub, M. (2018). Ozone effects on European forest growth—Towards an integrative approach. Journal of Ecology.
  • Capps, S. L., Driscoll, C. T., Fakhraei, H., Templer, P. H., Craig, K. J., Milford, J. B., & Lambert, K. F. (2016). Estimating potential productivity cobenefits for crops and trees from reduced ozone with US coal power plant carbon standards. Journal of Geophysical Research: Atmospheres, 121(24).
  • Emberson, L. D., Büker, P., Ashmore, M. R., Mills, G., Jackson, L. S., Agrawal, M., ... & Kobayashi, K. (2009). A comparison of North American and Asian exposure–response data for ozone effects on crop yields. Atmospheric Environment, 43(12), 1945-1953.
  • Emberson, L.D., H. Pleijel, E. A. Ainsworth, M. van den Berg, W. Ren, S. Osborne, G. Mills, D. Pandey, F. Dentener, P. Büker, F. Ewert, R. Koeble, R. Van Dingenen (2018). Ozone effects on crops and consideration in crop models, European Journal of Agronomy,
  • Feng, Z., Büker, P., Pleijel, H., Emberson, L., Karlsson, P. E., & Uddling, J. (2018). A unifying explanation for variation in ozone sensitivity among woody plants. Global change biology, 24(1), 78-84.
  • Ghosh, A., Singh, A. A., Agrawal, M., & Agrawal, S. B. (2018). Ozone Toxicity and Remediation in Crop Plants. In Sustainable Agriculture Reviews 27 (pp. 129-169). Springer, Cham.
  • Harmens, H., Hayes, F., Mills, G., Sharps, K., Osborne, S., & Pleijel, H. (2018). Wheat yield responses to stomatal uptake of ozone: Peak vs rising background ozone conditions. Atmospheric Environment, 173, 1-5.
  • Hayes, F., Williamson, J., & Mills, G. (2015). Species-specific responses to ozone and drought in six deciduous trees. Water, Air, & Soil Pollution, 226(5), 156.
  • Hill, J., et al. (2019). Air-quality-related health damages of maize. Nature Sustainability.
  • Lin, Y., Jiang, F., & Wang, H. (2017, December). Ozone Induced Premature Mortality and Crop Yield Loss in China. In AGU Fall Meeting Abstracts.
  • Lefohn, AS, Malley, CS, Smith, L, Wells, B, Hazucha, M, Simon, H, Naik, V, Mills, G, Schultz, MG, Paoletti, E, De Marco, A, Xu, X, Zhang, L, Wang, T, Neufeld, HS, Musselman, RC, Tarasick, D, Brauer, M, Feng, Z, Tang, H, Kobayashi, K, Sicard, P, Solberg, S and Gerosa, G 2018 Tropospheric ozone assessment report: Global ozone metrics for climate change, human health, and crop/ecosystem research. Elem Sci Anth, 6: 28. DOI:
  • Innes, J.L. and Skelly, J.M. 2002.  Forests and air pollution: an assessment of ‘forest health’ in the forests of Europe the Northeastern United States and Southeastern Canada. p.273-284 In: J.N.B. Bell and M. Treshow, EDS. Air Pollution and Plant Life. J. Wiley & Sons, LTD. West Sussex, England. 465pp.
  • Jahan, S. (2018). Atmospheric toxic gases and their probable impacts on public health and crop production (Doctoral dissertation, University of Dhaka).
  • Mills, G., Sharps, K., Simpson, D., Pleijel, H., Broberg, M., Uddling, J., ... & Agrawal, M. (2018). Ozone pollution will compromise efforts to increase global wheat production. Global change biology.
  • Mills G, Pleijel H, Malley CS, Sinha B, Cooper OR, Schultz MG, Neufeld HS, Simpson D, Sharps K,  Feng Z,  Gerosa G,  Harmens H, Kobayashi K,  Saxena P,  Paoletti E,  Sinha V, Xu X, Tropospheric Ozone Assessment Report: Present-day tropospheric ozone distribution and trends relevant to vegetation. Elem Sci Anth. 2018;6(1):47. DOI:
  • Mills, G., Sharps, K., Simpson, D., Pleijel, H., Frei, M., Burkey, K., Emberson, L., Uddling, J., Broberg, M., Feng, Zhaozhong, Kobayashi, K., Agrawal, M. (2018). Closing the global ozone yield gap: Quantification and cobenefits for multistress tolerance. Global Change Biology. 1-26. 10.1111/gcb.14381.
  • Pleijel, H., Broberg, M. C., Uddling, J., & Mills, G. (2018). Current surface ozone concentrations significantly decrease wheat growth, yield and quality. Science of The Total Environment, 613, 687-692.
  • Proietti, C., Anav, A., De Marco, A., Sicard, P., & Vitale, M. (2016). A multi-sites analysis on the ozone effects on Gross Primary Production of European forests. Science of the total environment, 556, 1-11.
  • Schiferl, L. D., & Heald, C. L. (2018). Particulate matter air pollution may offset ozone damage to global crop production. Atmospheric Chemistry and Physics, 18(8), 5953-5966.
  • Seltzer, K. M., Shindell, D. T., Kasibhatla, P., and Malley, C. S. (2020). Magnitude, trends, and impacts of ambient long-term ozone exposure in the United States from 2000 to 2015, Atmos. Chem. Phys., 20, 1757–1775,
  • Skelly, J.M., Chappelka, A.H., Laurence, J.A. and Fredericksen, T.S. 1997. Ozone and its known and potential effects on forests in eastern United States. p. 69-93 In Sandermann et al. eds. Forest Decline and Ozone: A comparison of controlled chamber and field experiments. Springer-Verlag. Berlin, Heidelberg.  400p.
  • Skelly, J.M.  2000.  Tropospheric ozone and its importance to forests and natural plant communities of the northeastern United States. Northeastern Naturalist (3) 221-236.
  • Shindell, D., et al., Temporal and spatial distribution of health, labor, and crop benefits of climate change mitigation in the United States. Proceedings of the National Academy of Sciences, 118 (46) e2104061118;, 2021.
  • Tiwari, S., & Agrawal, M. (2018). Ozone Biomonitoring, Biomass and Yield Response. In Tropospheric Ozone and its Impacts on Crop Plants (pp. 115-166). Springer, Cham.
  • Van Dingenen, R., Dentener, F. J., Raes, F., Krol, M. C., Emberson, L., & Cofala, J. (2009). The global impact of ozone on agricultural crop yields under current and future air quality legislation. Atmospheric Environment, 43(3), 604-618.
  • Liu, X., & Desai, A. R. (2021). Significant reductions in crop yields from air pollution and heat stress in the United States. Earth's Future, 9, e2021EF002000.

Other References cited on this website:

  • Boys, B.L., et al., Fifteen-year global time series of satellite-derived fine particulate matter. Environ. Sci. & Tech., 48,, (2014).
  • Brauer, M. et al., Ambient Air Pollution Exposure Estimation for the Global Burden of Disease 2013. Environ. Sci. Technol. 50, 79-88 (2016).
  • Cohen, A.J., et al., Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. The Lancet 389, 1907-1918, 2017.
  • Duncan, B.N., et al., Satellite data of atmospheric pollution for U.S. air quality applications: Examples of applications, summary of data end-user resources, answers to FAQs, and common mistakes to avoid. Atmos. Environ. 94, 647-662 (2014).
  • Jiang, Z., B. C. McDonald, H. Worden, J. R. Worden, K. Miyazaki, Z. Qu, D. K. Henze, D. B. A. Jones, A. F. Arellano, E. V. Fischer, L. Zhu, K. F. Boersma (2018), Unexpected slowdown of US pollutant emission reduction in the past decade Proceedings of the National Academy of Sciences Apr 2018, 201801191; DOI: 10.1073/pnas.1801191115.
  • Jin, X., A.M. Fiore, L.T. Murray, L.C. Valin, L.N. Lamsal, B.N. Duncan, K.F. Boersma, I. De Smedt, G. Gonzalez Abad, K. Chance, and G.S. Tonnesen (2017). Evaluating a space-based indicator of surface ozone-NOx-VOC sensitivity over mid-latitude source regions and application to decadal trends. J. Geophys. Res., 122.
  • Lelieveld, J., J. S. Evans, M. Fnais, D. Giannadaki, A. Pozzer, The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 525, 367-371 (2015).
  • Li, C., McLinden, C., Fioletov, V., Krotkov, N., Carn, S., Joiner, J., Streets, D., He, H., Ren, X., Li, Z., and Dickerson, R.: India is overtaking China as the world’s largest emitter of anthropogenic sulfur dioxide, Scientific Reports, DOI:10.1038/s41598-017-14639-8, 2017.
  • Loughner, C., B. Duncan, J. Hains, The Benefit of Historical Air Pollution Emissions Reductions during Extreme Heat, Environmental Manager, 64,, September, 2014.
  • Meng, J., C.L., Randall V. Martin, A. van Donkelaar, P. Hystad, and M. BrauerEstimated (2019), Long-Term (1981–2016) Concentrations of Ambient Fine Particulate Matter across North America from Chemical Transport Modeling, Satellite Remote Sensing, and Ground-Based Measurements, Environmental Science & Technology, 53 (9), 5071-5079.
  • NAS, National Academies of Sciences, Medicine, Thriving on Our Changing Planet: A Decadal Strategy for Earth Observation from Space.  (The National Academies Press, Washington, DC, 2018), pp. 700.
  • van Donkelaar, A., et al., Global Estimates of Fine Particulate Matter using a Combined Geophysical-Statistical Method with Information from Satellites, Models, and Monitors, Environ. Sci. Technol, doi: 10.1021/acs.est.5b05833, 2016.
  • Zhu, L., D. J. Jacob, F. N. Keutsch, L. J. Mickley, R. Scheffe, M. Strum, G. González Abad, K. Chance, K. Yang, B. Rappenglück, D. B. Millet, M. Baasandorj, L. Jaegle, and V. Shah, Formaldehyde (HCHO) as a Hazardous Air Pollutant: Mapping surface air concentrations from satellite and inferring cancer risks in the United States, Environ. Sci. Technol., 51(10), 5650-5657,, 2017.

Select Publications for OMI NO2:

  • Lamsal, L. N., N. A. Krotkov, A. Vasilkov, et al. 2021. "Ozone Monitoring Instrument (OMI) Aura nitrogen dioxide standard product version 4.0 with improved surface and cloud treatments." Atmospheric Measurement Techniques, 14: 455-479 [10.5194/amt-14-455-2021]
  • Duncan, B.N., L.N. Lamsal, A.M. Thompson, Y. Yoshida, Z. Lu, D.G. Streets, M.M. Hurwitz, and K.E. Pickering, A space-based, high-resolution view of notable changes in urban NOx pollution around the world (2005-2014), J. Geophys. Res., doi:10.1002/2015JD024121, 2016.
  •  Lamsal, L.N., B.N. Duncan, Y. Yoshida, N.A. Krotkov, K.E. Pickering, D.G. Streets, and Z. Lu, U.S. NO2 trends (2005-2013): EPA Air Quality System (AQS) data versus improved observations from the Ozone Monitoring Instrument (OMI), Atmos. Environ., doi:10.1016/j.atmosenv.2015.03.055, 2015.
  • Duncan, B., Y. Yoshida, B. de Foy, L. Lamsal, D. Streets, Z. Lu, K. Pickering, and N. Krotkov, The observed response of Ozone Monitoring Instrument (OMI) NO2 columns to NOx emission controls on power plants in the United States: 2005-2011, Atmos. Environ., 81, p. 102-111, doi:10.1016/jatmosenv.2013.08.068, 2013.
  • Lamsal, L. N., Krotkov, N. A., Celarier, E. A., Swartz, W. H., Pickering, K. E., Bucsela, E. J., Gleason, J. F., Martin, R. V., Philip, S., Irie, H., Cede, A., Herman, J., Weinheimer, A., Szykman, J. J., and Knepp, T. N., Evaluation of OMI operational standard NO2 column retrievals using in situ and surface-based NO2 observations, Atmos. Chem. Phys., 14, 11587-11609, doi:10.5194/acp-14-11587-2014, 2014. [pdf]
  • Bucsela, E.J., N.A. Krotkov, E.A. Celarier, L.N. Lamsal, W.H. Swartz, P.K. Bhartia, K.F. Boersma, J.P. Veefkind, J.F. Gleason, K.E. Pickering, A new stratospheric and tropospheric NO2 retrieval algorithm for nadir viewing satellite instruments: applications to OMI, Atmos. Meas. Tech., 6, 2607-2626, 2013.